Supraleitung, also das Verschwinden des elektrischen Widerstands in Materialien unterhalb einer kritischen Temperatur, ist längst kein Kuriosum mehr, sondern ein Phänomen, das zahlreiche Anwendungen gefunden hat, etwa zur Erzeugung und Detektion von Magnetfeldern, in der Sensorik (SQUIDs), zur zerstörungsfreien Materialprüfung, in Energietransport und -umwandlung und in der magnetischen Energiespeicherung. Parallel dazu ist das physikalische Verständnis dieses Effekts gewachsen, und dementsprechend bieten physikalische Fakultäten mit einem festkörperphysikalischen Schwerpunkt Vorlesungen zu den experimentellen und theoretischen Grundlagen der Supraleitung für fortgeschrittene Studierende der Physik und der Materialwissenschaften an.
Supraleitung – anschaulich erklärt
Auch die 8. Auflage des „Kleiner/Buckel“ zur Supraleitung folgt dem bewährten Ansatz, das physikalische Phänomen der Supraleitung in seinen zahlreichen Facetten möglichst anschaulich und ohne allzuviel mathematischen Ballast zu erklären. Ausgehend von einem Überblick über die wichtigsten, zum Verständnis benötigen quantenmechanischen Grundlagen behandelt das Buch die unterschiedlichen Supraleiter-Materialklassen, etwa die metallischen Supraleiter, Kuprate und Eisenpniktide. Die Schwerpunkte liegen dabei auf den Eigenschaften, der Herstellung und der Stabilität dieser Materialien. Die folgenden Kapitel beleuchten die Erklärungsmodelle der Supraleitung, die Thermodynamik des supraleitenden Zustands sowie dessen Zusammenbrechen. Ausführlich geht das Buch auf die für den praktischen Nutzen so wichtigen Josephson-Kontakte ein. Das letzte Kapitel widmet sich den zahlreichen Anwendungen der Supraleitung, zum Beispiel supraleitende Kabel, in der Kernspintomographie, der Kernfusion, der SQUID-Sensorik sowie der Mikroelektronik.
Für die Neuauflage wurde das Buch vollständig überarbeitet und mit Elementen angereichert, die das Verständnis fördern und das Lernen erleichtern wie etwa Kapiteleinführungen, Exkurse zur Messmethodik, mehr durchgerechnete Beispiele, Boxen zur Vertiefung weiterführender Aspekte und Kapitelzusammenfassungen.
Reinhard Kleiner/Werner Buckel, Supraleitung, ISBN 9783527414192
Warum organische Moleküle Namen brauchen – und warum das gar nicht so einfach ist
In der organischen Chemie gibt es Millionen von Verbindungen – und jede braucht einen eindeutigen Namen. Ohne klare Regeln wäre die Kommunikation zwischen Chemiker*innen ein einziges Chaos. Genau deshalb gibt es die IUPAC-Nomenklatur: ein weltweit einheitliches...
Was ist eigentlich der pH-Wert – und warum interessiert das die Chemie?
Der pH-Wert sagt uns, wie sauer oder basisch (alkalisch) eine Lösung ist. Die Skala reicht von 0 bis 14: pH 7 ist neutral (z. B. reines Wasser), unter 7 ist sauer (z. B. Zitronensaft), über 7 ist basisch (z. B. Seifenlauge). Der Begriff „pH“ steht für „potentia...
Unter Einsatz ihres Lebens: Virusforscher identifizieren den Überträger des Gelbfiebers
Gelbfieber ist eine oft tödlich verlaufende Tropenkrankheit. Sie wird durch das Gelbfiebervirus (aus der Familie der Flaviviren) ausgelöst und von Mücken der Art Aedes aegypti übertragen. Gefürchtet war diese Krankheit bei Generationen von europäischen Einwanderern in...
Three molecules that changed the world – and how they did It
Some molecules are more than just chemical structures – they are the unsung heroes of human history. They’ve cured diseases, sparked industries, and even inspired legends. Let’s take a journey through the molecular hall of fame and meet a few of the tiny titans that...

